Further Results on Sum Labelling of Split Graphs

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Further Results on Betweenness Centrality of Graphs

Betweenness centrality is a distance-based invariant of graphs. In this paper, we use lexicographic product to compute betweenness centrality of some important classes of graphs. Finally, we pose some open problems related to this topic.

متن کامل

Further results on total mean cordial labeling of graphs

A graph G = (V,E) with p vertices and q edges is said to be a total mean cordial graph if there exists a function f : V (G) → {0, 1, 2} such that f(xy) = [(f(x)+f(y))/2] where x, y ∈ V (G), xy ∈ E(G), and the total number of 0, 1 and 2 are balanced. That is |evf (i) − evf (j)| ≤ 1, i, j ∈ {0, 1, 2} where evf (x) denotes the total number of vertices and edges labeled with x (x = 0, 1, 2). In thi...

متن کامل

Further results on odd mean labeling of some subdivision graphs

Let G(V,E) be a graph with p vertices and q edges. A graph G is said to have an odd mean labeling if there exists a function f : V (G) → {0, 1, 2,...,2q - 1} satisfying f is 1 - 1 and the induced map f* : E(G) → {1, 3, 5,...,2q - 1} defined by f*(uv) = (f(u) + f(v))/2 if f(u) + f(v) is evenf*(uv) = (f(u) + f(v) + 1)/2 if f(u) + f(v) is odd is a bijection. A graph that admits an odd mean labelin...

متن کامل

Characterisation of Graphs with Exclusive Sum Labelling

A sum graph G is a graph with a mapping of the vertex set of G onto a set of positive integers S in such a way that two vertices of G are adjacent if and only if the sum of their labels is an element of S. In an exclusive sum graph the integers of S that are the sum of two other integers of S form a set of integers that label a collection of isolated vertices associated with the graph G. A grap...

متن کامل

further results on odd mean labeling of some subdivision graphs

let g(v,e) be a graph with p vertices and q edges. a graph g is said to have an odd mean labeling if there exists a function f : v (g) → {0, 1, 2,...,2q - 1} satisfying f is 1 - 1 and the induced map f* : e(g) → {1, 3, 5,...,2q - 1} defi ned by f*(uv) = (f(u) + f(v))/2 if f(u) + f(v) is evenf*(uv) = (f(u) + f(v) + 1)/2 if f(u) + f(v) is odd is a bijection. a graph that admits an odd mean lab...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mapana - Journal of Sciences

سال: 2013

ISSN: 0975-3303,0975-3303

DOI: 10.12723/mjs.26.8